31 Mayıs 2020 Pazar
Joystick ve Arduino ile Servo Motor Kullanımı
30 Mayıs 2020 Cumartesi
NTC Sensörü ile Sıcaklık ölçümü ve Buzzer Kullanarak yangın alarmı yapımı
Malzeme listesi:
1. Arduino Uno
2. BreadBoard
3. 1 adet Buzzer
4. 1 adet NTC Sensörü
5. Jumper Kablolar
6. 1 adet Led
Arduino NTC sensör kiti
Isı ölçüm cihazları, termostat, oda sıcaklığı ölçümü ve akıllı ev sistemi gibi projelerde rahatlıkla kullanılabilen bu sensör Arduino başta olmak üzere bir çok mikrodenetleyeci sistemi ile beraber kullanılabilmektedir.
10k NTC Sensör
Breadboard'muza eklediğimiz Buzzer'ın artı bacağından jumper kablo ile ardunio uno malzememizdeki 3 nolu dijital pine bağlantı kuruyoruz. Buzzer'ın kısa bacağını ise yine jumper kablo ile Ardunio Uno'da bulunan GND nün ucuna bağlıyoruz. NTC Sensörü 2 adet pini var.. pin in bir ucunu artı 5 Volta bağlıyoruz diğer pinini 10 k lık direnc ile Arduino Analog pinlerinden. A0 pinine
14 Mayıs 2020 Perşembe
Arduino UNO ile HC-SR04 sensor ve SERVO MOTOR ile Radar Devresi yapımı
Arduino UNO ile HC-SR04 sensor ve SERVO MOTOR ile Radar Devresi YAPIMI
Kullanılan Malzemeler :
3. HC-SR04 Uzaklık Sensörü tutacağı akrilik bir parçadan yapılmış
HC-SR04 SENSÖR
SERVO MOTOR
//Radar proje Arduino Yaz?l?m?
#include <NewPing.h>
#include <Servo.h>
#define TRIGGER_PIN 12
#define ECHO_PIN 11
#define MAX_DISTANCE 100
#define SERVO_PWM_PIN 5 // means -angle .. angle
#define ANGLE_BOUNDS 60
#define ANGLE_STEP 1
int angle = 0;
int dir =1; // servonun kaç derece ile döneceğini belirledik.
Servo myservo;
NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE);
void setup()
{Serial.begin(9600);
myservo.attach(SERVO_PWM_PIN);
pinMode(TRIGGER_PIN, OUTPUT);
pinMode(ECHO_PIN, INPUT);
myservo.writeMicroseconds(1000); // servo 90 dereceye ayarlandı.
}
void loop()
{
delay(50);
myservo.write(angle + ANGLE_BOUNDS);
hesapla(angle);
if (angle >= ANGLE_BOUNDS || angle <= -ANGLE_BOUNDS)
{
dir = -dir;
}
angle += (dir * ANGLE_STEP);
}
int hesapla(int angle)
{
int cm = sonar.ping_cm();
Serial.println(cm, DEC);
if(cm>0)
{
Serial.println(myservo.read());
}
}
Radar Projesinde HC-SR04 ve Stepper Motor Arduino ya pinlerin bağlanması.
İzleyiciler
TIMING CALCULATORS FOR THE LM555
TIMING CALCULATORS FOR THE LM555
LED DİRENÇ HESAPLAMA
All LEDs require current limiting, without a current limiting mechanism the LED will usually burn out in under a second. Adding a simple resistor is the easiest way to limit the current. Use the calculator below to find out the value of resistor you require.
For example if you are wanting to power one of our_blank">red LEDs in an automotive application you would see that the typical forward voltage is 2.0 Volts and the maximum continuous forward current is 30mA. Therefore you would enter 14.5, 2.0 and 30 into the Single LED calculation box. After calculating you get 470ohm 1 watt as the result. Here is a that allows you to enter a resistor value and generate the corresponding color code.
Note: For automotive applications use the actual system voltage, not 12 Volts. Most 12 Volt system actually operate at around 14.5 Volts.
Lm317 uygulama devreleri ve detayli bilgiye Buradan ulasabilirsiniz |
LM555 - ASTABLE OSCILLATOR CALCULATOR
NOTE: The leakage currents of electrolytic capacitors will affect the actual output results of the timers. To compensate for leakage it is often better to use a higher value capacitor and lower value resistances in the timer circuits.
LM555 Astable Oscillator Circuit Diagram
The next calculator can find the capacitance needed for a particular output frequency if the values of R1 and R2 are known.
Value Of R1 Ohms | Value Of R2 Ohms |
Frequency Desired Hertz |
| |
|