1 Ağustos 2010 Pazar

eeprom pic programlayıcı download

In this project we are building a JDM programmer that can handle PIC12, PIC16 and PIC18family microcontrollers and some popular 24C family EEPROMs. The programmer also provides ICSP feature that allows In-Circuit Serial Programming.  So if you desire, you will not have to carry your MCU each time when you reprogram it. The circuit is connected to the PC via serial port and no external power supply is needed. On the other hand, if you want to use it with a laptop that do not provide RS232 connection, using the circuit with a USB to RS232 converter may not give a proper result

Supported Devices

EEPROM:  24C01A, 24C02, 24C04, 24C08, 24C16, 24C32, 24C64/65, AT24C128, AT24C256, AT24C512, M24C128, M24C256, 24C515, PCF8572 or 8572 = 24C01, PCF8582 or 8582 = 24C02, PCF8592 or 8592 = 24C04, SDA2506, SDA2516, SDA2526, SDA2546, SDA2586, SDA3506, SDA3516, SDA3526, 4C016 == 24C01, GRS-003 == 24C02, GRN-004 == 24C04, GRN-008 == 24C04, GRX-006 == 24C04, GRX-007 == 24C04, KKZ06F == 24C01, BAW658049 == 24C02, BAW57452 == 24C02, M8571 == 24C02, X24C0
Microchip PIC: 12C508, 12C508A, 12C509, 12C509A, 12CE518, 12CE519,12C671, 12C672, 12CE673, 12CE674,12F629, 12F675, 16C433, 16C61, 16C62A, 16C62B, 16C63, 16C63A, 16C64A, 16C65A, 16C65B, 16C66, 16C67,16C71, 16C72, 16C72A, 16C73A, 16C73B, 16C74A, 16C74B, 16C76, 16C77,16F73, 16F74, 16F76, 16F77,16C84, 16F83, 16F84, 16F84A, 16C505,16C620, 16C620A, 16C621, 16C621A, 16C622, 16C622A, 16CE623, 16CE624, 16CE625, 16F627, 16F628, 16F628A, 16F630, 16F676, 16C710, 16C711, 16C712, 16C715, 16C716, 16C717, 16C745, 16C765, 16C770, 16C771, 16C773, 16C774, 16C781, 16C782, 16F818, 16F819, 16F870, 16F871, 16F872, 16F873, 16F874, 16F876, 16F877, 16F873A, 16F874A, 16F876A, 16F877A, 18F242, 18F248, 18F252, 18F258, 18F442, 18F448, 18F452, 18F458, 18F1320, 18F2330, 18F432

Building the Programmer

As you see the circuitry contains a few components listed below.

Kullanılan parçaların listesi

T1, T2 : BC337 Transistor
D1, D4, D5, D6 : 1N4148 Diode
D3 : 6V2 Zener Diode
D2 : 5V1 Zener Diode
R3, R4 : 1K8 1/4W Resistor
R1 : 10K 1/4W Resistor
R2 : 1K5 1/4W Resistor
X1 : DB9 PCB Mount Female Connector
C1, C2 : 100uF 16V Electrolytic Capacitor
SV1 and SV4 : 40 Pin Machine Tooled IC Socket
SV2, SV3 : 20 Pin Machine Tooled IC Socket
SV5 (ICSP) : 6 Pin Header Connector9
L1, L2, L3 : LED (L1: GREEN, L2: RED, L3: YELLOW)
The PCB file is provided in pdf format. You can apply it to the board by using the ironing method.
Click here to download the schematic and the PCB layout files.
Assembling the components is straightforward. The only trick is shown in the photo. Before soldering the 40 pin socket, you must cut the plastic bridges between the sides. Another issue, don't forget to solder the diode (D6) and the jumper under the sockets first.
Here is the final. If you don't miss any short-circuits, you will see the red LED will bright up when you connect the programmer to the serial port. Now it is ready to use. You may use ICPROG and WinPIC to start programming your PICs or EEPROMs. 
LED Indications; Yellow:Clock ,  Red:Power , Green:Program

Placement 

Placement is shown in the figure below.
You may use a ZIF socket instead according to your needs.
IC Placement

Hiç yorum yok:

Yorum Gönder

İzleyiciler

LED DİRENÇ HESAPLAMA

All LEDs require current limiting, without a current limiting mechanism the LED will usually burn out in under a second. Adding a simple resistor is the easiest way to limit the current. Use the calculator below to find out the value of resistor you require.

For example if you are wanting to power one of our_blank">red LEDs in an automotive application you would see that the typical forward voltage is 2.0 Volts and the maximum continuous forward current is 30mA. Therefore you would enter 14.5, 2.0 and 30 into the Single LED calculation box. After calculating you get 470ohm 1 watt as the result. Here is a that allows you to enter a resistor value and generate the corresponding color code.

Note: For automotive applications use the actual system voltage, not 12 Volts. Most 12 Volt system actually operate at around 14.5 Volts.

Supply Voltage
VOLTS
Voltage Drop Across LED
VOLTS
Desired LED Current
MILLIAMPS



Calculated Limiting Resistor
OHMS
Nearest higher rated 10% resistor

Calculated Resistor Wattage
WATTS
Safe pick is a resistor with
power rating of (common values are .25W, .5W, and 1W)
WATTS

LEDs in series

Several leds in series with one resistor
Supply Voltage
VOLTS
Voltage Drop Across LED
VOLTS
Desired LED Current
MILLIAMPS
How many LEDs connected




Calculated Limiting Resistor
OHMS
Nearest higher rated 10% resistor

Calculated Resistor Wattage
WATTS
Safe pick is a resistor with
power rating of (common values are .25W, .5W, and 1W)
WATTS
LM317 UYGULAMA DEVRELERİ HESAPLAMASI

 




Çıkış Voltajı
R1 resistor

R2 resistor

R1 resistor
R2 resistor

Çıkış Voltajı


Lm317 uygulama devreleri ve detayli bilgiye Buradan ulasabilirsiniz

LM555 - ASTABLE OSCILLATOR CALCULATOR

LM555 - ASTABLE OSCILLATOR CALCULATOR
Value Of R1 Ohms Value Of R2 Ohms
Value Of C1 Microfarads
Output Time HIGH SECONDS Output Time LOW SECONDS Output Period HIGH + LOW SECONDS Output Frequency HERTZ Output Duty Cycle PERCENT
Resistor values are in Ohms (1K = 1000) - Capacitor values are in Microfarads (1uF = 1)

NOTE: The leakage currents of electrolytic capacitors will affect the actual output results of the timers. To compensate for leakage it is often better to use a higher value capacitor and lower value resistances in the timer circuits.

LM555 Astable Oscillator Circuit Diagram


LM555 - ASTABLE CAPACITOR CALCULATOR

The next calculator can find the capacitance needed for a particular output frequency if the values of R1 and R2 are known.

Value Of R1 Ohms Value Of R2 Ohms
Frequency Desired Hertz
Capacitance uF
s

VOLT AMPER OHM ve WATT HESAPLAMA

Current:
kA (kiloamps) A (amps) mA (milliamps) µA (microamps)
Voltage:
kV (kilovolts) V (volts) mV (millivolts) µV (microvolts)