17 Nisan 2010 Cumartesi

Direnç, Kondansatör ve Bobin karşısında Alternatif akımın davranışı Hakkında

Direnç, Kondansatör ve Bobin karşısında Alternatif akımın
davranışı nasıldır ?

Resistansın ( direncin ) Alternatif akıma karşı davranışı D.C. gibidir. Uçlarına A.C. uygulanmış Bir Resistor'ün gösterdiği direnç aynıdır.Ohm yasası kullanılır.

Uçlarına A.C. uygulanmış bir bobinde “Endüktif devre “ durum değişiktir. Bu bobin uclarında bir zıt E.M.K oluşur. Bobin in endüktansı yanında bir de resistansı söz konusudur eğer bu resistans sıfır değerde ise bu bobin devresi saf endüktif devre olarak adlandırılır. Bobinin gösterdiği dirence ise
"Endüktif Reaktans" adı verilir.

{Endüktif Reaktans } X L = wL = 2 p f L dir. ( 3 )

Seri ve paralel bağlamalarda dirençler gibi aynı formüller kullanılır. Bir bobine tatbik edilen A.C. da akım engelle karşılaşır ve geri kalır. Bu nedenle bobinde akımla gerilim arasında 90 derece faz farkı vardır.

Uclarına bir A.C. tatbik edilmiş kondansatörde, yani kapasitif bir devrede ki dirence "Kapasitif Reaktans" adı verilir.

{ Kapasitif Reaktans } Xc = 1/ w. C dir.

Xc = 1/ 2p f C dir. ( 4 )

Burada değerler Ohm, Farad, Henry'dir. Bir kapasitif devrede gerilime zorluk vardır ve gerilim 90 derece geri kalır. Paralel kondansatörler de toplam kapasitif reaktans;


1/Xc= 1/ Xc1 +1/Xc2+1/Xc3 +..1/Xcn dir.

Seri bağlı kondansatörlerde ise toplam kapasitif reaktans her kondansatörün kapasitif reaktansları toplamıdır.

Xc = Xc1+Xc2+Xc3+….Xcn dir.

Buraya kadar yalnız başına olan bobin, kondansatör ve direncin alternatif akıma karşı olan davranışını ve gösterdiği direnci gördük,
ama elektronik devrelerde çoğu zaman bobin, kondansatör ve dirençler birlikte kullanılırlar.İşte böyle hallerde yani;
bobin, kondansatör, direnç gibi elemanların, çeşitli şekilde bağlantılarında A.C. ye karşı gösterilen eşdeğer dirence
'EMPEDANS'’ adı verilir. Z ile gösterilir.Klasik Ohm kanununda ki R direnci yerine Z empedans değeri konarak, Alternatif akım
devrelerinde Ohm kanunu kullanılabilir.

V = I . Z dir.

Hiç yorum yok:

Yorum Gönder

İzleyiciler

LED DİRENÇ HESAPLAMA

All LEDs require current limiting, without a current limiting mechanism the LED will usually burn out in under a second. Adding a simple resistor is the easiest way to limit the current. Use the calculator below to find out the value of resistor you require.

For example if you are wanting to power one of our_blank">red LEDs in an automotive application you would see that the typical forward voltage is 2.0 Volts and the maximum continuous forward current is 30mA. Therefore you would enter 14.5, 2.0 and 30 into the Single LED calculation box. After calculating you get 470ohm 1 watt as the result. Here is a that allows you to enter a resistor value and generate the corresponding color code.

Note: For automotive applications use the actual system voltage, not 12 Volts. Most 12 Volt system actually operate at around 14.5 Volts.

Supply Voltage
VOLTS
Voltage Drop Across LED
VOLTS
Desired LED Current
MILLIAMPS



Calculated Limiting Resistor
OHMS
Nearest higher rated 10% resistor

Calculated Resistor Wattage
WATTS
Safe pick is a resistor with
power rating of (common values are .25W, .5W, and 1W)
WATTS

LEDs in series

Several leds in series with one resistor
Supply Voltage
VOLTS
Voltage Drop Across LED
VOLTS
Desired LED Current
MILLIAMPS
How many LEDs connected




Calculated Limiting Resistor
OHMS
Nearest higher rated 10% resistor

Calculated Resistor Wattage
WATTS
Safe pick is a resistor with
power rating of (common values are .25W, .5W, and 1W)
WATTS
LM317 UYGULAMA DEVRELERİ HESAPLAMASI

 




Çıkış Voltajı
R1 resistor

R2 resistor

R1 resistor
R2 resistor

Çıkış Voltajı


Lm317 uygulama devreleri ve detayli bilgiye Buradan ulasabilirsiniz

LM555 - ASTABLE OSCILLATOR CALCULATOR

LM555 - ASTABLE OSCILLATOR CALCULATOR
Value Of R1 Ohms Value Of R2 Ohms
Value Of C1 Microfarads
Output Time HIGH SECONDS Output Time LOW SECONDS Output Period HIGH + LOW SECONDS Output Frequency HERTZ Output Duty Cycle PERCENT
Resistor values are in Ohms (1K = 1000) - Capacitor values are in Microfarads (1uF = 1)

NOTE: The leakage currents of electrolytic capacitors will affect the actual output results of the timers. To compensate for leakage it is often better to use a higher value capacitor and lower value resistances in the timer circuits.

LM555 Astable Oscillator Circuit Diagram


LM555 - ASTABLE CAPACITOR CALCULATOR

The next calculator can find the capacitance needed for a particular output frequency if the values of R1 and R2 are known.

Value Of R1 Ohms Value Of R2 Ohms
Frequency Desired Hertz
Capacitance uF
s

VOLT AMPER OHM ve WATT HESAPLAMA

Current:
kA (kiloamps) A (amps) mA (milliamps) µA (microamps)
Voltage:
kV (kilovolts) V (volts) mV (millivolts) µV (microvolts)