24 Ocak 2010 Pazar

Bobin Hesaplama Programı (inductance calculator)



Bobin Hesaplama Programı
Bob Stein`in Hazırladığı kurulum gerektirmeyen indiktör ve filtre Hepaplama Programı.Programı Kullanmak 
için micro2003b.exe  dosyasını çalıştırın
 bobin_hesaplama_programi.rar




INDUCTANCE CALCULATOR

Ver 3.0 7-9-92 This program will calculate the following for round copper wire or copper strap:
1 – Inductance of a single-layer coil
2 – Turns in a single-layer coil for a specified inductance
3 – Turns from coil stock of known pitch (turns per inch or turns per cm) for a specified inductance
4 – Inductance of a straight strap
5 – Length of a straight strap for a specified inductance
6 – Inductance of a transmission-line section
7 – Length of transmission line for a specified inductance
8 – Inductance of a wire parallel to and grounded to a ground plane
9 – Length of wire parallel to ground plane for a specified inductance
10 – Inductance of a straight wire
11 – Length of a straight wire for a specified inductance
12 – Inductance of a multi-layer rectangular coil
13 – Inductance of a multi-layer circular coil
14 – Turns in a multi-layer bobbin-wound coil for a specified inductance
The source code, written in GW-Basic, and the compiled program are not copy- righted and are released into the public domain. No claims are made for its accuracy or suitability for any purpose.
Bob Stein


Hiç yorum yok:

Yorum Gönder

İzleyiciler

LED DİRENÇ HESAPLAMA

All LEDs require current limiting, without a current limiting mechanism the LED will usually burn out in under a second. Adding a simple resistor is the easiest way to limit the current. Use the calculator below to find out the value of resistor you require.

For example if you are wanting to power one of our_blank">red LEDs in an automotive application you would see that the typical forward voltage is 2.0 Volts and the maximum continuous forward current is 30mA. Therefore you would enter 14.5, 2.0 and 30 into the Single LED calculation box. After calculating you get 470ohm 1 watt as the result. Here is a that allows you to enter a resistor value and generate the corresponding color code.

Note: For automotive applications use the actual system voltage, not 12 Volts. Most 12 Volt system actually operate at around 14.5 Volts.

Supply Voltage
VOLTS
Voltage Drop Across LED
VOLTS
Desired LED Current
MILLIAMPS



Calculated Limiting Resistor
OHMS
Nearest higher rated 10% resistor

Calculated Resistor Wattage
WATTS
Safe pick is a resistor with
power rating of (common values are .25W, .5W, and 1W)
WATTS

LEDs in series

Several leds in series with one resistor
Supply Voltage
VOLTS
Voltage Drop Across LED
VOLTS
Desired LED Current
MILLIAMPS
How many LEDs connected




Calculated Limiting Resistor
OHMS
Nearest higher rated 10% resistor

Calculated Resistor Wattage
WATTS
Safe pick is a resistor with
power rating of (common values are .25W, .5W, and 1W)
WATTS
LM317 UYGULAMA DEVRELERİ HESAPLAMASI

 




Çıkış Voltajı
R1 resistor

R2 resistor

R1 resistor
R2 resistor

Çıkış Voltajı


Lm317 uygulama devreleri ve detayli bilgiye Buradan ulasabilirsiniz

LM555 - ASTABLE OSCILLATOR CALCULATOR

LM555 - ASTABLE OSCILLATOR CALCULATOR
Value Of R1 Ohms Value Of R2 Ohms
Value Of C1 Microfarads
Output Time HIGH SECONDS Output Time LOW SECONDS Output Period HIGH + LOW SECONDS Output Frequency HERTZ Output Duty Cycle PERCENT
Resistor values are in Ohms (1K = 1000) - Capacitor values are in Microfarads (1uF = 1)

NOTE: The leakage currents of electrolytic capacitors will affect the actual output results of the timers. To compensate for leakage it is often better to use a higher value capacitor and lower value resistances in the timer circuits.

LM555 Astable Oscillator Circuit Diagram


LM555 - ASTABLE CAPACITOR CALCULATOR

The next calculator can find the capacitance needed for a particular output frequency if the values of R1 and R2 are known.

Value Of R1 Ohms Value Of R2 Ohms
Frequency Desired Hertz
Capacitance uF
s

VOLT AMPER OHM ve WATT HESAPLAMA

Current:
kA (kiloamps) A (amps) mA (milliamps) µA (microamps)
Voltage:
kV (kilovolts) V (volts) mV (millivolts) µV (microvolts)